Saturday, May 2, 2009

How Influenza Viruses Change: Drift and Shift

Influenza viruses are dynamic and are continuously evolving. Influenza viruses can change in two different ways: antigenic drift and antigenic shift. Influenza viruses are changing by antigenic drift all the time, but antigenic shift happens only occasionally. Influenza type A viruses undergo both kinds of changes; influenza type B viruses change only by the more gradual process of antigenic drift.

Antigenic drift refers to small, gradual changes that occur through point mutations in the two genes that contain the genetic material to produce the main surface proteins, hemagglutinin, and neuraminidase. These point mutations occur unpredictably and result in minor changes to these surface proteins. Antigenic drift produces new virus strains that may not be recognized by antibodies to earlier influenza strains. This process works as follows: a person infected with a particular influenza virus strain develops antibody against that strain. As newer virus strains appear, the antibodies against the older strains might not recognize the "newer" virus, and infection with a new strain can occur. This is one of the main reasons why people can become infected with influenza viruses more than one time and why global surveillance is critical in order to monitor the evolution of human influenza virus stains for selection of which strains should be included in the annual production of influenza vaccine. In most years, one or two of the three virus strains in the influenza vaccine are updated to keep up with the changes in the circulating influenza viruses. For this reason, people who want to be immunized against influenza need to be vaccinated every year.

Antigenic shift refers to an abrupt, major change to produce a novel influenza A virus subtype in humans that was not currently circulating among people. Antigenic shift can occur either through direct animal (poultry)-to-human transmission or through mixing of human influenza A and animal influenza A virus genes to create a new human influenza A subtype virus through a process called genetic reassortment. Antigenic shift results in a new human influenza A subtype. A global influenza pandemic (worldwide spread) may occur if three conditions are met:

  • A new subtype of influenza A virus is introduced into the human population.
  • The virus causes serious illness in humans.
  • The virus can spread easily from person to person in a sustained manner.

No comments: